

Modelling nitrogen flows and losses on dairy livestock farms

Nick Hutchings

FarmAC - underlying philosophy

- > For researchers (advisors?)
- > Data-poor environments ©
- >Low temporal resolution 😊
- > Highly flexible ©
- >User inputs farm structure and management 😊

FarmAC - Nitrogen

FarmAC - Carbon

Some technology...

Define crop sequences

Farm	Crop se	quence	Yield	Rumina	ints	Non Rum	inants	Manure	Balance	Result N	
Parame	eterising										
Grass g	razed										
		Produc			Product 2 Grazed yield Straw			Product 1		Product 2 Potential yield	
Crop		Grazed	yleid	Gra	zea yieia	use	Potenti	iai yieid	Potentia	ai yieid	
		Kg DM/	На		D И/На		kg DM/	На	kg DM/H	a	
Permanent grass		8500					9500				
Permane	ent grass	0					500				
Save											
Save											
Grass si	ilage										
		Product 1			Product 2		Produc		Product		
Crop		Grazed yield		Gra	zed yield	d Straw use	Potent	ial yield	Potentia	al yield	
		Kg DM/	На	Kg	DM/Ha	u.,c	kg DM/	На	kg DM/H	ła	
Permanent grass							9500				
Permanent grass		0					500				
Save											

Number of livestock and feed ration

Manure management system

Grazed feed is different

> Non-grazed feed

- > Difference between consumption & production results in import or export
- > Realistic

> Grazed feed

- > Mainly occurs on the farm no import/export
- > Emissions associated with deposited excreta
- > User must balance DM consumption and production
- > Grazed feed production must be achieved

Fertiliser and manure

Soil C and N storage

Adaption

Projection

Farm manure and feed balance

Farm Crop sequence	e Yield	Ruminants	Non	Ruminan	ts Manu	ire Balance
Parameterising	· · · · · · · · · · · · · · · · · · ·	, commones			- Figure	Dalance
Manure– kg N						
· ·	Produced Bo	ought So	ld Use	d		
Manure type						
cattle slurry, with cover	0 22	792.62	0 2279	2.62		
cattle slurry, with cover	8431.94	0	0 843	1.94		
Feed						
	Prod	luced Bo	ought	Sold	Used	
Feed type	К	g DM K	g DM	Kg DM	Kg DM	
Corn cob maize		0 867	48.33	0	86748.33	
default beddding		0 31	122.4	0	31122.4	
Grass - silage, high fod	der quality 6620	20.61	0 48	38523.95 ·	173496.67	
Grass, 12-15 cm		52000	0	64.15	51935.85	
Hay, standard		0 595	92.33	0	59592.33	
Maize - silage, high fod	der quality 5579	86.86	0 40	01085.53	156901.33	
Soyabean meal		0 :	24893	0	24893	
Spring barley		0 1229	56.33	0	122956.33	
Wheat meal		0 116	92.17	0	11692.17	

Outputs

- > Animal and crop production
- > C and N budgets
 - > Livestock, manure management, field, farm
- > Direct and indirect GHG budgets
 - > Including C sequestration in soil

Model is most applicable to:

- > Need farm-specific estimates of GHG emissions
- > Livestock farms (especially ruminants)
 - > Balance feed production and consumption
- > Where crop/manure residues are particularly important
- > Need to assess GHG mitigation measures
- > Limited availability of data means more complex models cannot be used

FarmAC - contributors

> AGRO

Nick Hutchings, Ib Sillebak
 Kristensen, Margit Jørgensen,
 Jonas Vejlin, Jørgen Olesen

> INRA, France

Philippe Faverdin, ErwanCutullic

> CIRAD, France

Jonathan Vayssières, Celine Birnholz

> TEAGASC, Ireland

- > Donal O'Brien
- > University of Pretoria, S. Africa
 - > Eyob Tesfamariam
- > EMBRAPA, Brazil
 - > Luis Barioni
- > UFRGS, Brazil
 - > Olivier Bonnet

