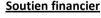


11 èmes Rencontres de la fertilisation raisonnée et de l'analyse – 20 et 21 novembre 2013

Evaluation des pertes d'azote par volatilisation ammoniacale suite à l'épandage de produits résiduaires organiques et d'engrais minéraux

1^{ère} synthèse des résultats acquis dans le cadre du projet CASDAR VOLAT'NH₃

Cohan J.P., Charpiot A., Morvan T., Eveillard P., Trochard R., Champolivier L., De Chezelles E., Heurtaux M., Lorinquer E., Espagnol S., Génermont S., Loubet B.



MINISTERE DE L'AGRICULTURE DE L'AGROALIMENTAIR ET DE LA FORET

rvec la contribution financière du compte d'affectation spécia

Le contexte technico-économique et réglementaire

Contexte technico-économique :

- Pertes d'azote par volatilisation ammoniacale = une des 1ères causes de pertes d'efficacité de l'azote apporté par les PRO et les engrais minéraux
- L'évolution des charges en intrants des exploitations nécessite une maximisation de l'efficacité de l'azote apporté pour gagner en autonomie vis-à-vis des engrais minéraux et optimiser le recyclage des PRO

Contexte environnemental et réglementaire :

- NH₃ = polluant atmosphérique
- Agriculture = secteur contribuant à 98% des émissions françaises (78% pour les PRO, 20 % pour les engrais minéraux)*
- Emissions plafonnées par la Directive NEC (2001/81/CE)
- + réglementations liées à l'annexe IX du protocole de Göteborg et au plan particules

L'étude de l'impact des techniques culturales sur la volatilisation ammoniacale est un préalable à l'amélioration des performances technico-économiques et environnementales des exploitations dans leurs emplois des engrais azotés

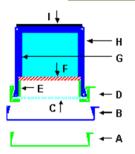
*CITEPA 2012

Les enjeux d'une méthodologie d'évaluation expérimentale des émissions au champ

Techniques de mesures « classiques » :

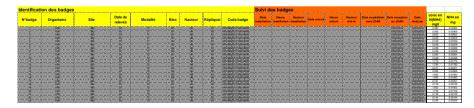
- Défaut de bilan par marquage ¹⁵N : pas de différenciation des pertes et pas applicable aux produits organiques solides.
- Enceintes de mesure : pas adaptée à des suivis de longue durée car perturbation du couvert et peu adaptées aux suivis NH₃
- Méthodes micrométéorologiques : pas adaptées à la comparaison de traitements car nécessitant de grandes unités expérimentales (1 ha et plus)
- Tunnels de ventilation : coût financier important et contraintes logistiques de déploiements

Il est nécessaire de disposer d'une technique de mesure fiable et opérationnelle au champ afin de mettre en place de larges réseaux d'acquisition de références.



Méthodologie employée : le suivi au champ

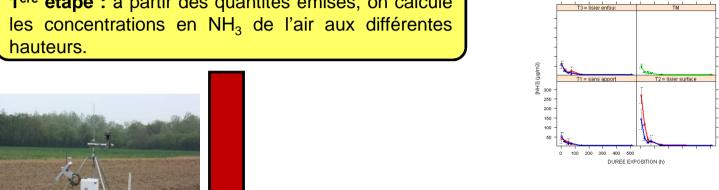
- A bouchon de scellement final
- B bouchon supérieur de protection C membrane PTFE 5 µm (27mm diam.)
- D bouchon percé pour la membrane
- anneau de fix ation (6 mm hauteur)
- papier filtre imbibé
- G anneau interne support papier filtre
- H corps du badge
- I velcro pour fixation au support

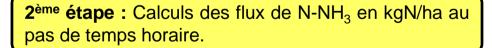

Principe n 1 : suivi des quantités de NH₃ émis via des pièges portant des filtres imbibés d'acide (badge ALPHA) installés et relevés à pas de temps réguliers au champ.

Principe n 2 : Suivi par modalités testées à 2 hauteurs de mesures (30 cm et 1 m de la source) + suivi sur des mâts de 3 m entourant les essais pour capter le « bruit de fond » du site d'essai.

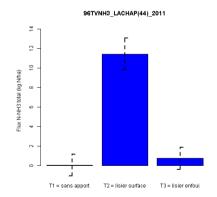
Principe n 3 : Les quantités de NH3 captés sont extraites et quantifiées par analyses au laboratoire (prestataire du projet = LDAR).

Technique initiée par le CEH d'Edimburgh (Sutton et al. 2001)




Méthodologie employée : la modélisation des flux

1ère étape : à partir des quantités émises, on calcule hauteurs.

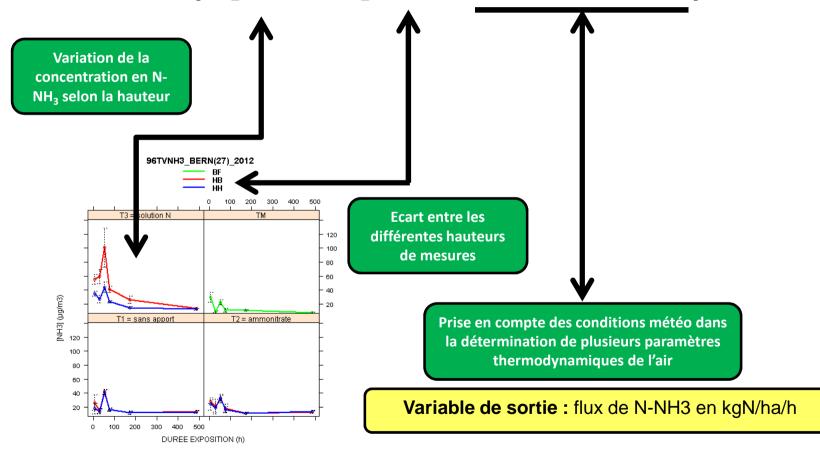


Données météo

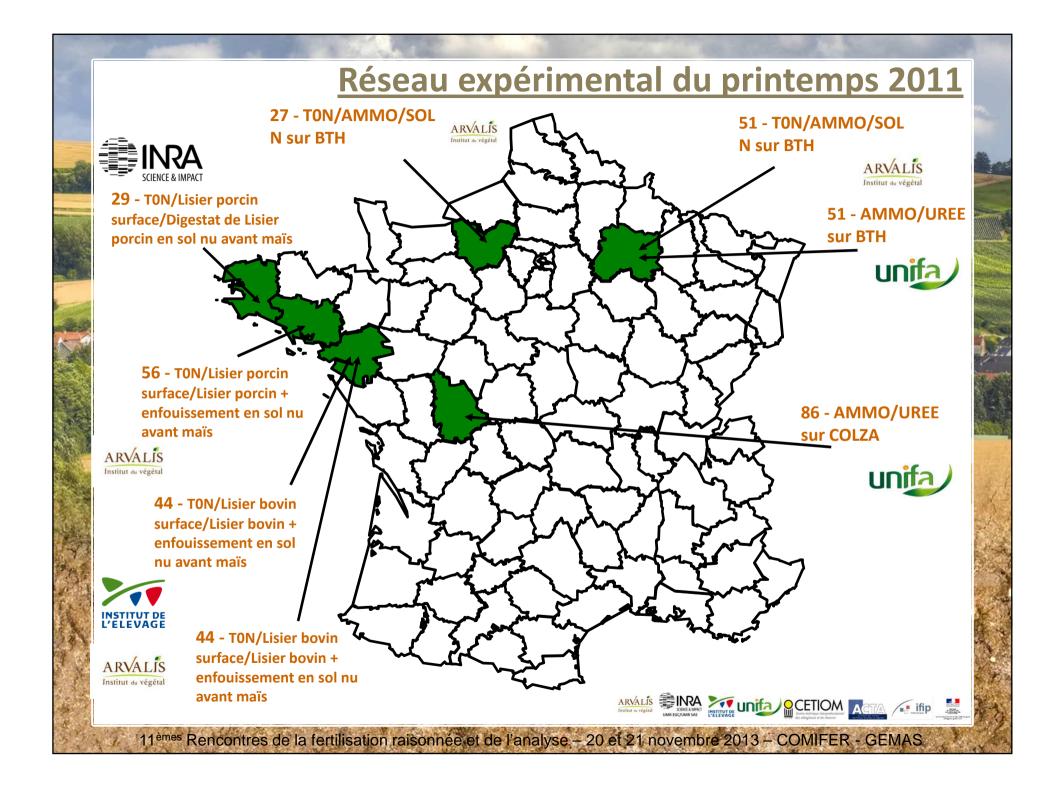
Plusieurs modèles testés dans le projet

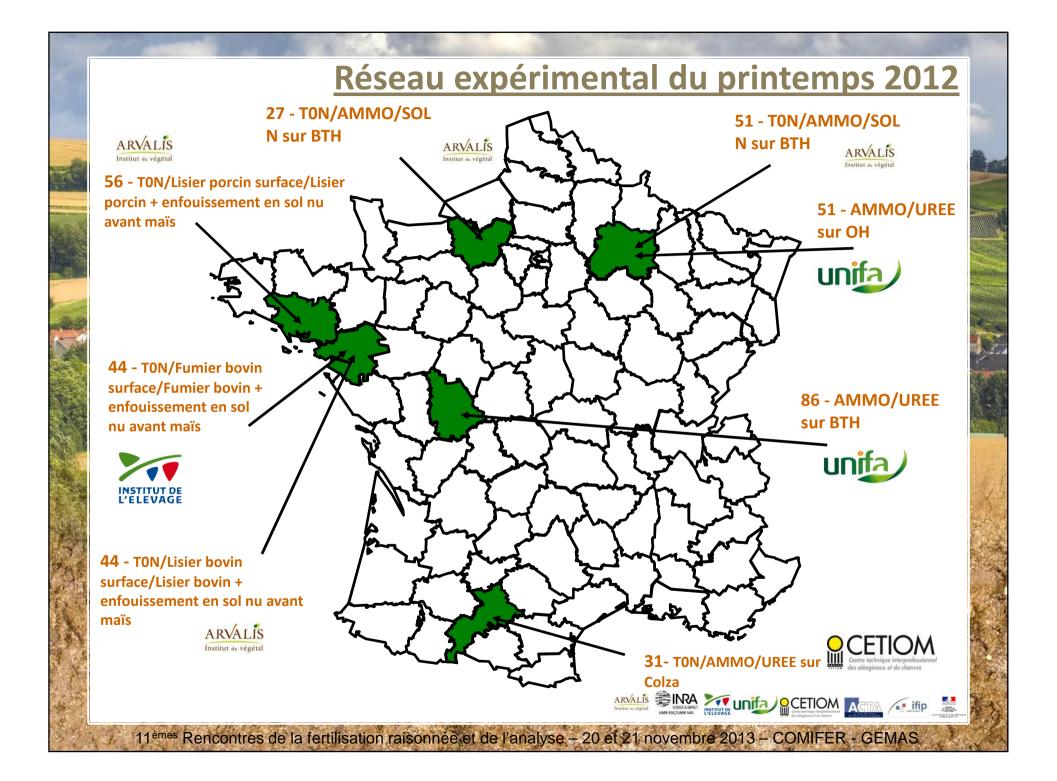
- Méthodologie initiée par l'INRA EGC (Loubet et al. 2010 et 2011) et testée initialement par l'UNIFA
- Méthodologie validée sur de grandes unités expérimentales (1 ha)

STVNH3 LACHAP(44) 201

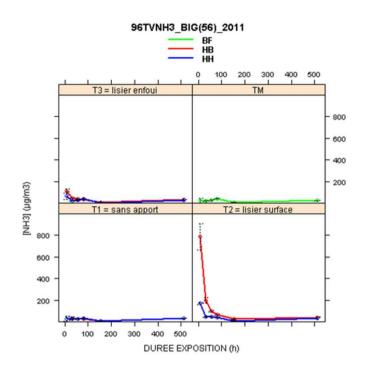


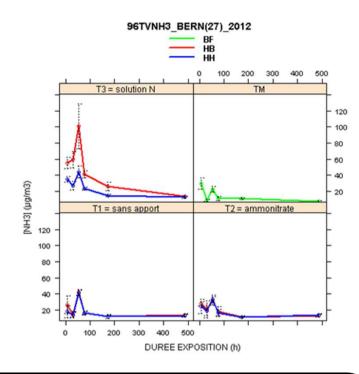
<u>Un des modèles utilisés actuellement : méthode</u> <u>des gradients simplifiée</u>


Flux = $f(\Delta[N-NH3]; \Delta H; VENT; T^{\circ}; RG)$



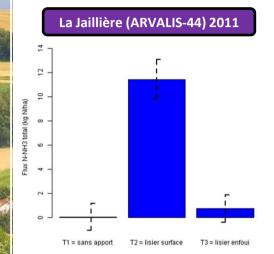
11 èmes Rencontres de la fertilisation raisonnée et de l'analyse - 20 et 21 novembre 2013 - COMIFER - GEMAS

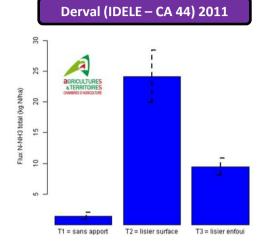

Flechard and Fowler 1998; Sutton et al. 2000

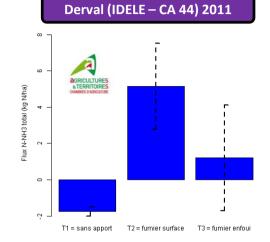

ARVALÍS FINAN INCIDENTAL AND THE PROPERTY OF T

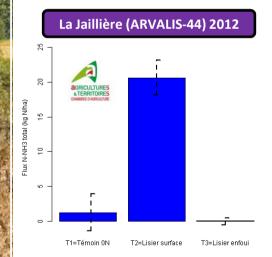
Les enseignements méthodologiques du suivi au champ

- Une très bonne répétabilité des mesures élémentaires (faible variabilité intrabloc)
- Sensibilité des capteurs à même de discriminer des concentrations d'ammoniac dans l'air d'ampleurs variées
- Des unités expérimentales (parcelles élémentaires de 400 m²) ne semblant pas engendrer de phénomène de contamination important







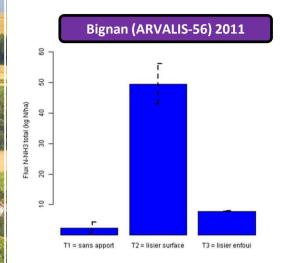


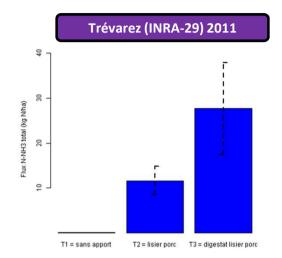
Les résultats en lisiers et fumiers de bovins

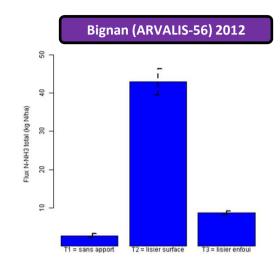
Essai	Modalité	N-Total épandu (kgN/ha)	N-NH₄⁺ épandu (kgN/ha)	Flux N-NH ₃ (kgN/ha)	Flux N-NH ₃ (% N-Total)	Flux N-NH ₃ (% N-NH ₄ +)
LA JAILLIERE (44) 2011	Lisier bovin surface	114	39	11	10%	29%
LA JAILLIERE (44) 2011	Lisier bovin enfoui	114	39	1	1%	2%
DERVAL (44) 2011	Lisier bovin surface	136	61	24	18%	40%
DERVAL (44) 2011	Lisier bovin enfoui	136	61	9	7%	15%
LA JAILLIERE (44) 2012	Lisier bovin surface	75	27	21	28%	76%
	Lisier bovin enfoui	75	27	0	0%	0%

Essai	Modalité	N-Total épandu (kgN/ha)	N-NH₄⁺ épandu (kgN/ha)	Flux N-NH₃ (kgN/ha)	Flux N-NH ₃ (% N-Total)	Flux N-NH ₃ (% N-NH ₄ +)
DERVAL (44) 2012 Bloc 1	Fumier bovin surface	102	23	3	3%	15%
	Fumier bovin enfoui	68	15	-1	-1%	-6%
DERVAL (44) 2012 Bloc 2	Fumier bovin surface	130	29	7	5%	24%
	Fumier bovin enfoui	130	29	3	3%	11%

Modèle de flux utilisé: Gradient V2 2







Les résultats en lisiers de porcs

Essai	Modalité	N-Total épandu (kgN/ha)	N-NH₄⁺ épandu (kgWha)	Flux N-NH ₃ (kgN/ha)	Flux N-NH ₃ (% N-Total)	Flux N-NH ₃ (% N-NH ₄ +)
BIGNAN (56) 2011	Lisier porc surface	148	71	50	33%	70%
	Lisier porc enfoui	148	71	8	5%	11%
TREVAREZ (29) 2011	Lisier porc surface	151	106	12	8%	11%
	Digestat lisier porc surface	171	123	28	16%	22%
BIGNAN (29) 2012	Lisier porc surface	150	76	43	29%	56%
	Lisier porc enfoui	150	76	9	6%	11%

Modèle de flux utilisé: Gradient V2_2

Epandage de PRO: cohérence avec la bibliographie

1 : modalité sans enfouissement testée dans les essais

2 : modalité avec enfouissement testée dans les essais

Sommers et Hutchings 2001

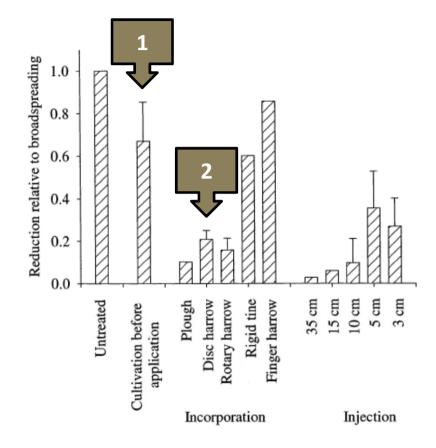


Fig. 5. Reduction in NH₃ emission due to application technique related to ammonia losses from animal slurry broadspread onto soil or a plant covered soil (from Döhler, 1991; Kowalewsky, 1990; Pain et al., 1990c; Klarenbeek and Bruins, 1991; Phillips et al., 1991; Sommer and Petersen, 1992; Larsen et al., 1992; Rubæk et al., 1996; Sommer and Ersbøll, 1994; Bless et al., 1991; Thompson et al., 1987).

Epandage de PRO: cohérence avec la bibliographie

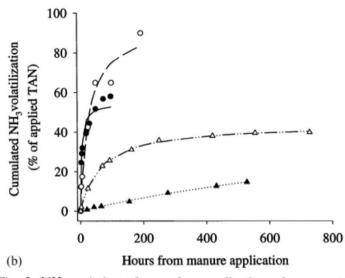
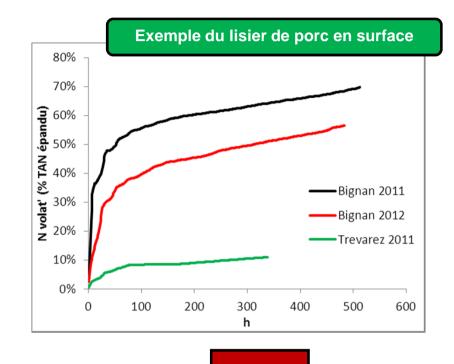



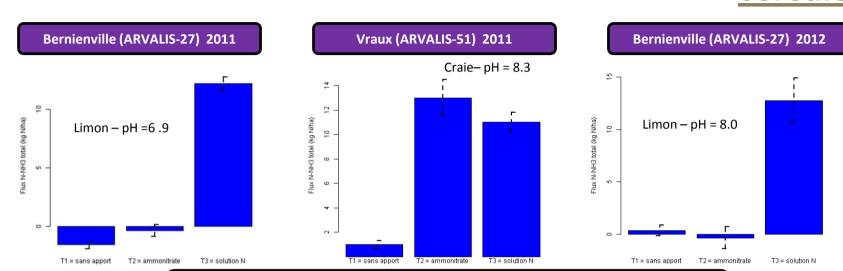
Fig. 3. NH₃ emission after surface application of manure to stubble, expressed as: (a) the mean hourly rate; or (b) the cumulative emission. Emissions are expressed as % of TAN or TAN + ureic acid applied. Pig slurry (adapted from Bless et al., 1991), pig farmyard manure, layer manure and broiler litter (adapted from Chambers et al., 1997).

A venir: modélisation selon le formalisme de Michaelis-Menten (Sommer et Ersboll 1994)

→ Accès à la vitesse de volatilisation et au niveau de volatilisation maximale

Sommers et Hutchings 2001

Modèle de flux utilisé: Gradient V2 2



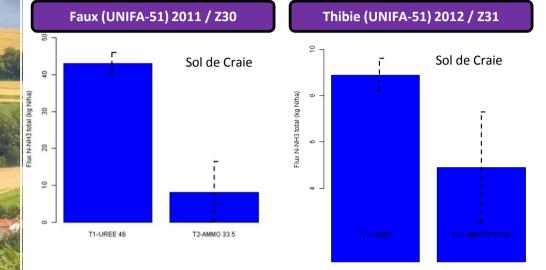
Les résultats ammonitrate x solution azotée sur céréales

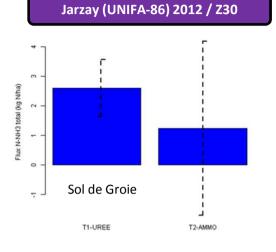
- Apports à Z30-Z31
- Deux années d'expérimentations très contrastées sur le plan météorologique

•						
Essai	Modalité	N-Total épandu (kgWha)	N-NH₄⁺ épandu (kgN/ha)	Flux N-NH ₃ (kgN/ha)	Flux N-NH ₃ (% N-Total)	Flux N-NH ₃ (% N-NH ₄ +)
BERNIENVILLE (27) 2011	AMMONITRATE	100	50	0	0%	-1%
	SOLUTION N	100	75	12	12%	16%
VRAUX (51) 2011	AMMONITRATE	100	50	13	13%	26%
	SOLUTION N	100	75	11	11%	15%
Essai	Modalité	N-Total épandu (kgN/ha)	N-NH₄⁺ épandu (kgN/ha)	Flux N-NH₃ (kgN/ha)	Flux N-NH ₃ (% N-Total)	Flux N-NH ₃ (% N-NH ₄ +)

Essai	Modalité	N-Total épandu	N-NH ₄ + épandu	Flux N-NH ₃	Flux N-NH ₃ (%	Flux N-NH ₃ (%
		(kgN/ha)	(kgN/ha)	(kgWha)	N-Total)	N-NH ₄ +)
BERNIENVILLE (27) 2012	AMMONITRATE	100	50	0	0%	-1%
	SOLUTION N	100	75	13	13%	17%
VRAUX (51) 2012	AMMONITRATE	100	50	4	4%	8%
	SOLUTION N	100	75	8	8%	10%

Modèle de flux utilisé: Gradient V2_2

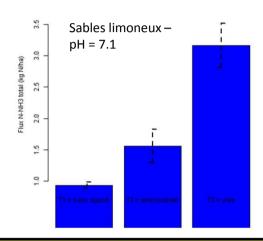




Les résultats ammonitrate x urée sur céréales

Essai	Modalité	N-Total épandu (kgWha)	N-NH₄⁺ épandu (kgN/ha)	Flux N-NH₃ (kgN/ha)	Flux N-NH ₃ (% N-Total)	Flux N-NH ₃ (% N-NH ₄ +)
FAUX (51) 2011 - Z30	UREE SOLIDE	100	100	43	43%	43%
1 AOX (31) 2011 - 230	AMMONITRATE	100	50	8	8%	16%
FAUX (51) 2011 - Z39	UREE SOLIDE	50	50	4	8%	8%
	AMMONITRATE	50	25	2	5%	10%
THIBIE (51) 2012 - Z30	UREE SOLIDE	80	80	9	11%	11%
	AMMONITRATE	80	40	5	6%	12%
JARZAY (86) 2012 - Z30	UREE SOLIDE	65	65	3	4%	4%
	AMMONITRATE	65	32.5	1	2%	4%
JARZAY (86) 2012 - Z39	UREE SOLIDE	50	50	7	15%	15%
	AMMONITRATE	50	25	5	10%	21%

Modèle de flux utilisé: Gradient V2_2



Les résultats ammonitrate x urée sur colza

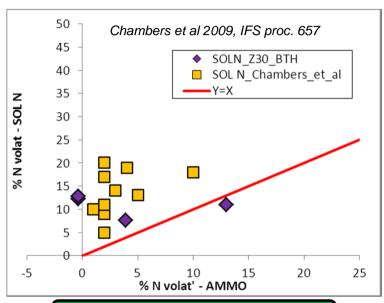
Massognes (UNIFA-86) - 2011

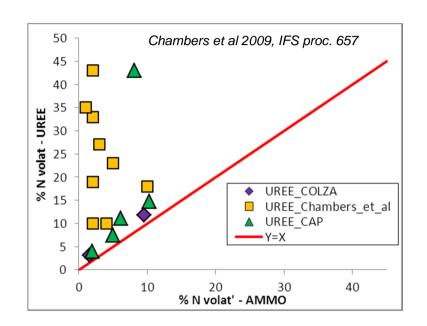
En Crambade (CETIOM-31) - 2012

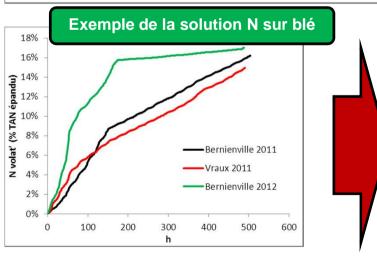
• Apports à C1 – D1

Essai	Modalité	N-Total épandu (kgN∕ha)	N-NH₄⁺ épandu (kgN/ha)	Flux N-NH₃ (kgN/ha)	Flux N-NH ₃ (% N-Total)	Flux N-NH ₃ (% N-NH ₄ +)
MASSOGNES (86) 2011	AMMONITRATE	110	55	11	10%	19%
	UREE SOLIDE	110	110	13	12%	12%
EN CRAMBADE (31) 2012	AMMONITRATE	100	50	2	2%	3%
	UREE SOLIDE	100	100	3	3%	3%

Modèle de flux utilisé: Gradient V2 2







Epandage d'engrais minéraux : cohérence avec la bibliographie

A venir: modélisation selon un formalisme logistique

→ Accès à la vitesse de volatilisation et au niveau de volatilisation maximale

Conclusions et perspectives

Une méthodologie prometteuse:

- Une très bonne répétabilité des mesures élémentaires (faible variabilité intra-bloc).
- Une sensibilité des capteurs à même de discriminer des concentrations d'ammoniac dans l'air d'ampleurs variées.
- Des unités expérimentales (parcelles élémentaires de 400 m²) ne semblant pas engendrer de phénomène de contamination important.
- Des modèles d'interprétation des flux toujours en phase de perfectionnement mais donnant déjà des résultats cohérents avec les connaissances antérieures.

Conclusions et perspectives

Des résultats cohérents avec les connaissances antérieures :

- Cinétiques d'émissions rapides des lisiers.
- Forte efficacité de l'enfouissement des PRO pour limiter les pertes.
- Différence de sensibilité entre l'AMMONITRATE d'un côté l'UREE/SOLUTION N de l'autre.
- L'étude de la compréhension des phénomènes mesurés va se poursuivre.

Conclusions et perspectives

De nouvelles expérimentations sont envisagées :

- Autres techniques d'application des PRO (lisiers sur blé, fientes de volailles...)
- Comparaison tri-produits AMMO/UREE/SOLUTION N
- Tests des nouvelles formes d'engrais azotés

