

Améliorer la caractérisation des effluents d'élevage par des méthodes et des outils innovants pour une meilleure prise en compte agronomique

Etat d'avancement du projet

E. de Chezelles, V. Parnaudeau, N. Damay B. Decoopman, P. Levasseur, C. Leroux, R. Trochard, JM Machet, P. Denoroy

Projet « effluents d'élevage »

Financement CasDAR / ADEME

Porté par RMT Fertilisation & Environnement et RMT Elevage et Environnement

15 partenaires techniques : Instituts Techniques Agricoles, Chambres d'Agriculture, Organismes de recherche, Laboratoires d'analyse et de recherche

Objectif général : Améliorer la caractérisation des effluents d'élevage et mieux prendre en compte leur diversité de composition, dans les outils opérationnels de raisonnement de fertilisation et d'évaluation des impacts environnementaux (Azofert, Régifert, Syst'N, Azolis, Planilis, MesP@rcelles) et modèles de simulations des flux environnementaux (MELODIE, MOLDAVI)

Objectifs opérationnels

- ⇒ Détermination des critères pertinents pour améliorer la description des effluents d'élevage dans les outils. Amélioration de la typologie des effluents d'élevage (meilleure affectation des produits dans les différentes catégories)

- ⇒ Acquérir de nouvelles références sur les effluents peu connus et amenés à se développer

Volet « Analyse de la sensibilité des outils d'aide à la décision aux paramètres caractérisant les effluents et les épandages »

N.Damay & C. Le Roux (LDAR)
R.Trochard (Arvalis)
V.Parnaudeau, J.-M.Machet,
P.Denoroy (INRA)

Rappel des objectifs

- Les outils d'aide à la décision (OAD) en matière de fertilisation et environnement utilisent des paramètres (de calcul ou bien des variables d'entrées) qui caractérisent les effluents d'élevage et les épandages.
- Analyse simplifiée de la sensibilité des sorties des outils à la variation des caractéristiques des effluents (+ épandages), pour les outils Azofert (fertilisation des cultures annuelles), Syst'N (diagnostic des pertes N et gestion de N à l'échelle pluri-annuelle), Planilis (gestion P-K-Mg), RegiFert (gestion de la MO sol, statut acido-basique, P-K-Mg, oligo-élements)

Données et contextes

- Définition de 4 zones géographiques contrastées :
 - Alsace, Bretagne, Picardie, Midi-Pyrénées
 - 2 jeux de données climatiques contrastées pour chacune des régions (avec des années sèches et humides)
 - 1 à 3 systèmes de cultures par région
 - Un type de sol commun à toutes les régions (limon argileux) et un ou deux sols de chaque région

Exemples de résultats : AzoFert®

Objectifs:

Analyser l'impact sur certains postes du bilan : l'amplitude de variation de la dose d'N prévisionnelle, de la contribution directe de l'effluent...

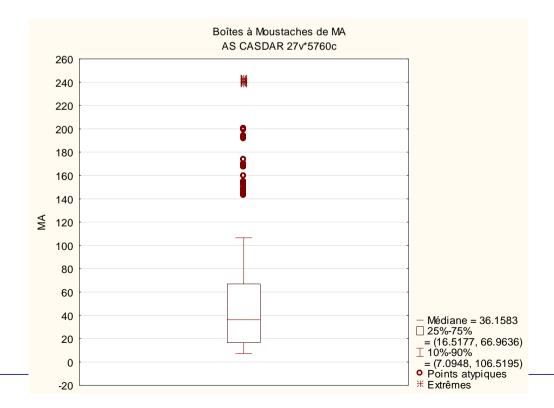
Détecter les interactions entre C et N en faisant varier les dates d'apport.

Définir les limites d'utilisation de l'outil et voir les répercussions quand les données d'entrée ne sont pas cohérentes.

Simulations réalisées :

8 parcelles

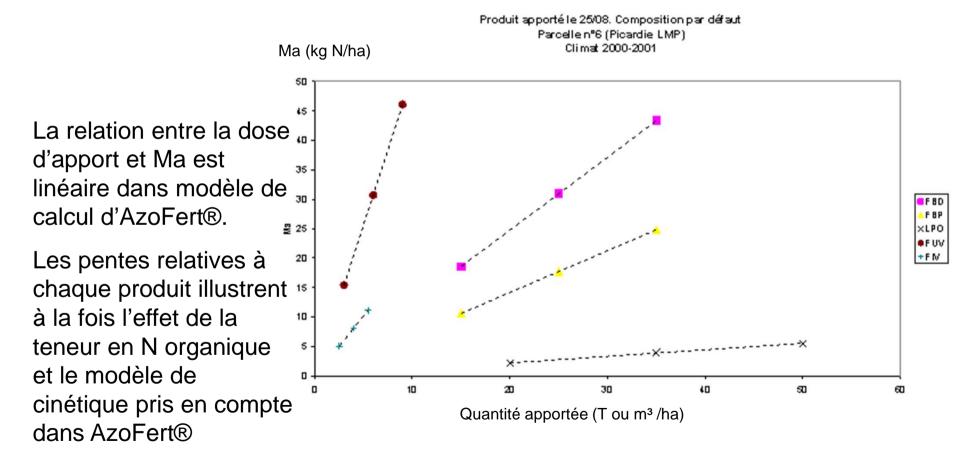
5 types d'effluent


2 dates d'apport

3 quantités apportées

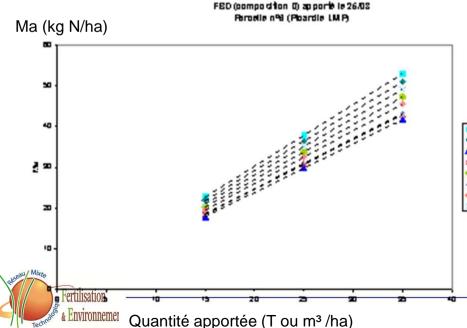
3 compositions

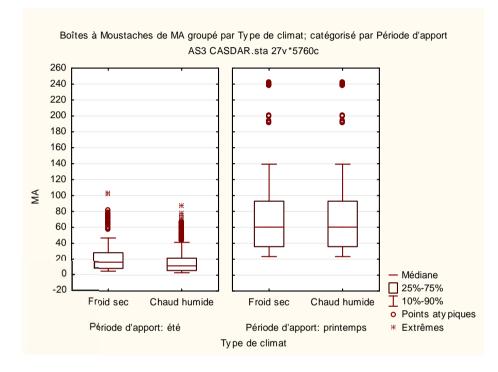
8 fichiers climatiques


→ 5760 cas à analyser

Exemples de résultats : AzoFert®

Familles de produits organiques et doses d'apport

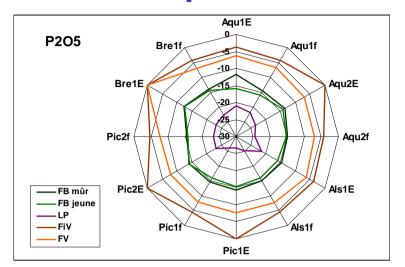


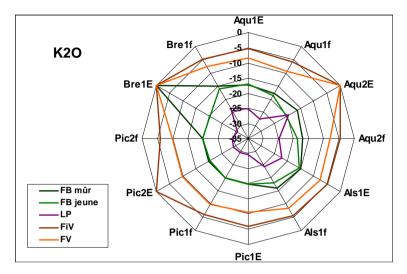


Exemples de résultats : AzoFert®

Effets du climat

Dans les conditions d'application d'AzoFert®, la conception des fichiers climatiques (climat réel jusqu'à la date du reliquat puis données moyennes) implique que seuls les apports d'été sont impactés par l'effet du climat





| Planeira 2001-2002 | Planeira 2004-2005 | Colores 19 204-1927 | Colores 2004-2005 | Colores 19 204-2006 | Colores 19 2004-2006 | Foulouse 2008-2005

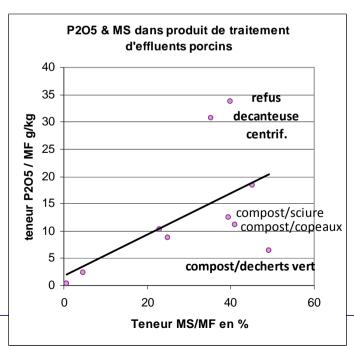
L'effet du climat reste limité comparativement aux caractéristiques du produit ou à la dose d'apport.

Exemples de résultats : Planilis

Déterminer la variation de la dose totale d'engrais à appliquer sur la rotation par point de variation de la teneur du PRO dans cet élément, pour 2 teneurs du sol: proches des seuils impasse et renforcement

<u>1ères conclusions</u>

- La variation de la dose conseillée par Planilis est peu sensible aux situations étudiées pour un PRO donné.
- Le conseil de dose varie peu avec la variation de teneur en P₂O5 ou K₂O pour les fientes et fumiers de volailles, il varie fortement pour le lisier de porcs et de façon intermédiaire pour les fumiers de bovins.
- → Les teneurs en P₂O₅ et K₂O des fumiers de bovins et surtout des lisiers de porcs devront être déterminées avec plus de précision que pour les PRO avicoles ou subdivisés dans une typologie plus précise


Exemples de résultats : Regifert

Ne sont concernés que les modules MO, P, K et Mg de RegiFert . Les effluents interviennent sur la disponibilité d'un élément x suivant le modèle linéaire

X dispo = quantité effluent * % MS/MF * % X/MS * coeff.dispo

- 1) Le besoin de fertilisation minérale de complément est plus sensible à l'apport d'effluent (a) dans les situations à besoin de fertilisation relativement faible : sols peu fixateurs, cultures peu exigeantes, récolte exportant peu (b) dans le cas d'effluents relativement riches en l'élément considéré
- 2) On a souvent une forte corrélation entre la quantité d'élément disponible / brut et la teneur en MS de l'effluent ou tout au moins cette relation permet d'identifier des groupes de produits
- → C'est une voie de typologie à explorer

Exemple :dans les produits de traitement d'effluents porcins : 3 g^{ds} groupes. Pour les effluents bruts, seul "vieux fumier/paille" se distingue des autres

Perspectives

- Finir les analyses de sensibilité pour Syst'N (simulations)
- Rédiger les résultats des différentes AS
- Etablir les conclusions pour le paramétrage des OAD

Volet «Calculateur de la quantité et de la composition des effluents d'élevage »

Pascal Levasseur (IFIP)

Le cahier des charges en 3 étapes

Et pour les 3 filières animales

- Bovin: Alicia Charpiot (IE)
- Volaille: Claude Aubert, Paul Ponchant (ITAVI)
- Porc: Pascal Levasseur (IFIP)

1- Inventaire des données existantes

- Simulateurs existants/en cours: Mélodie, Moldavie
- Casdar Eau
- → Choix des équations et facteurs de variation à faire figurer dans l'outil: effectif, logement, type alimentation et abreuvement... selon filière animale

2- Elaboration du calculateur/acquisition de données

Ex: enquête terrain des volumes de lisier de porc produit

3- Validation de l'outil

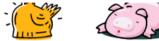
Avancement

- Outil excel opérationnel à ce jour
- Pages communes pour la présentation du troupeau et les résultats
- Mais spécificités des filières animales nécessitant des onglets de saisie séparés
- Ergonomie, terminologies et options (ex: saisonnalité de la composition) encore à travailler/harmoniser

La page de présentation actuelle

Composition des effluents en élevage bovins, porcs et volailles

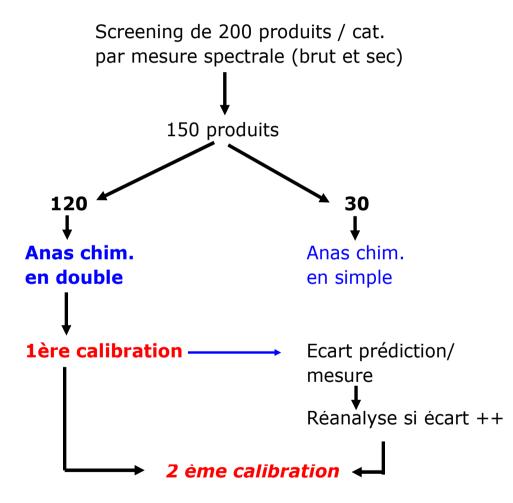
Bovi	ns	Nombre	Mode de logement	kg/animal/jour
Vache La	itière	85	Logette, lisier	2
Vache allaitante	avec son veau	0	Logette, lisier Etable entravée, lisier	7
Génisse (6 n	nois-1 an)	12	Litière accumulée, couloir lisier	7
Génisse (1	<mark>2</mark> ans)	12	Logette, mixte lisier/fumier Etable entravée, fumier	7
Génisse (> 2 ans)	12	Pente paillée	7
Bovin à l'engra	ais (0 - 1 an)	0	Logette, fumier Litière accumulée, couloir fumier	0
Bovin à l'engra	is (1 - 2 ans)	0	Pente paillée	0
Bovin à l'engr	ais (> 2 ans)	0	Etable entravée, fumier	0
Por	CS	Effectif	Ouvrage de stockage et/ou type de produits	T/an
Truies et	verrats		Fosse stockage 1	
Post-se	vrage		Fosse stockage 2	
Porcs char	rcutiers		Fumière (fumier paille frais)	
Espèce de Volailles	Mode de production	Effectif annuel	Ouvrage de stockage et/ou type de produits	T/an
Dinde de chair	Standard	125000	Fumière (fumier paille composté)	150


Ville la plus proche :	St Brieuc
Période d'épandage prévue :	Hiver/printemps
Couverture ouvrage de stockage :	Non

Et la présentation des résultats

Filière/atelier	Ouvrage de destination	Intitulé produit	Quantité annuelle	Unités
Bovins	Liquides (fosse 1)	Liquides (lisier, purin, eaux vertes, eaux blanches, eaux brunes)	2552	m3/an
The company	Solide (fumière et bout de champs)	Fumier	160	t/an
	Fosse 1	Lisier/purin	1989	m3/an
Porcins	Fosse 2	Lisier/purin	1989	
	Fumière	Fumier frais paille	2000	
		Compost paille	-	t/an
		Fumier frais sciure	-	
		Compost sciure	-	
Volailles				

	Quantité d'éléments transitant annuellement dans l'ouvrage de stockage							ge .			Co	ncentrati	on des effl	uents à l'a	nnée			
Unités	MS	MO	С	NTK	N ammo	P2O5	K20	Cu	Zn	MS	MO	С	NTK	N ammo	P2O5	K20	Cu	Zn
		t/an				kg/	/an				% du brut			g/kg prod	duit brut		mg/	/kg MS
m3/an	123	87	43	5281	-	2085	7753	1	-	4,8	3,4	1,7	2,1	0,0	0,8	3,0	-	-
t/an	35	26	13	752	-	446	1307	-	-	22,1	16,2	8,1	4,7	0,0	2,8	8,2	-	-
m3/an	33	22	11	3730	2741	2 617	2 089	4	27	1,7	1,1	0,5	1,9	1,4	1,3	1,1	109	822
	21	12	6	3283	2450	2 013	1 548	26	19	1,0	0,6	0,3	1,7	1,2	1,0	0,8	1283	905
	620	495	248	5094	1640	4 335	7 088	18	87	31,0	24,8	12,4	2,5	0,8	2,2	3,5	29	141
t/an	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

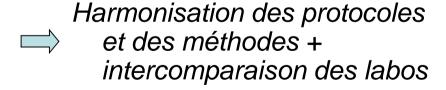


Volet « Prédiction de la composition des effluents d'élevage par la spectrométrie proche infra rouge (SPIR)»

Nathalie Damay, Caroline Leroux (LDAR)

Paramétrage SPIR - Résumé du projet

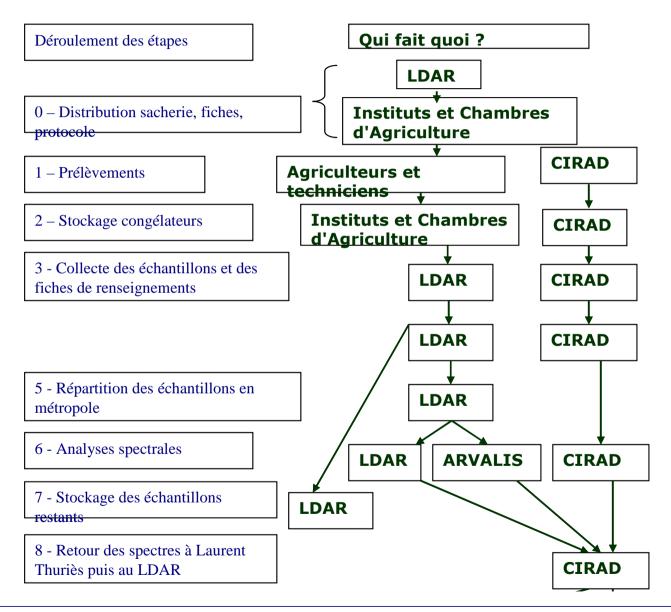
- Conditions d'obtention d'un paramétrage de qualité :
 - Spécifique / catégorie de produits : choix des catégories suivantes :
 - Fumier de bovins
 - Lisier de porc
 - Fumier de volailles
 - Effectif important :
 - \cong 150 produits



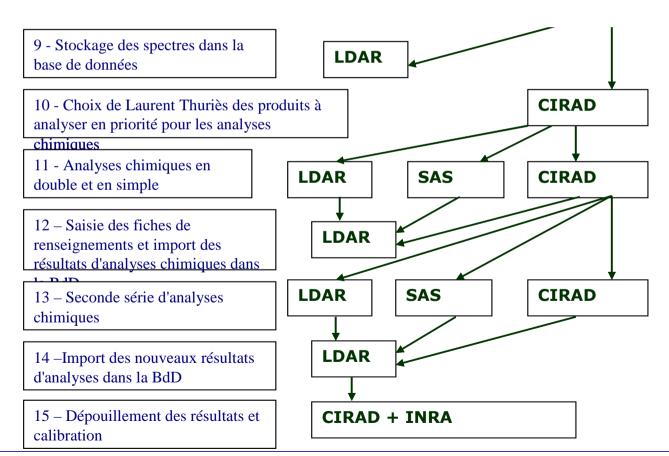
600 produits à collecter...

Paramétrage SPIR - Résumé du projet

- 4 laboratoires impliqués dans les analyses et mesures :
 - LDAR Laon (coordination)
 - Arvalis : SAS Ardon et le Pôle Analyses et Mesures de Boigneville
 - CIRAD Réunion


- Partenaires :
 - Chambres Agriculture
 - Instituts : IE, IFIP, ITAVI, Arvalis
 - ACTA
 - Laboratoires
 - INRA
 - CIRAD

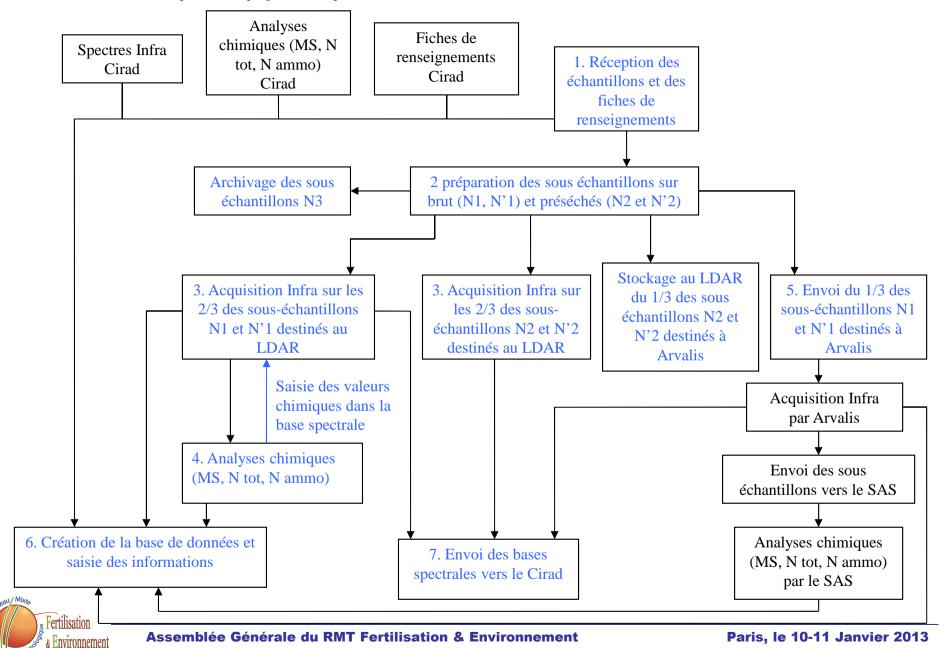
Aspects organisationnels : déroulé des étapes



Aspects organisationnels : déroulé des étapes

Déroulement des étapes

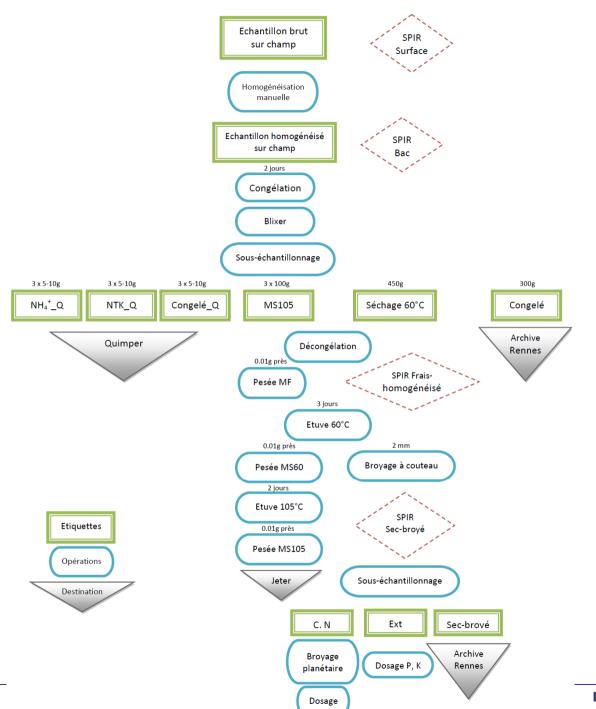
Qui fait quoi ?


Point sur les prélèvements réalisés

Fumier de bovins			Lisier de porc			Fumier de volailles		
	NB	ech		NB	ech		NB	ech
Partenaires	réalisé	prévu	Partenaires	réalisé	prévu	Partenaires	réalisé	prévu
Institut de l'Elevage :	38	68	IFIP	8	8	ITAVI	50	50
			CRAB: techniciens de gpt	110	100	CRAB et ITAVI	22	50
BCEL Ouest	93	75						
CRA Lorraine	22	6	CRA Lorraine		2	CRA Lorraine		
CA 85	8	6	CA 85		2	CA 85		
CA Loiret	10		CA Loiret			CA Loiret		
Cemagref Montoldre	4	3	Arvalis (La Jaillière)			Arvalis (La Jaillière)		
Arvalis (La Jaillière)	5	7						
INRA Clermont								
LDAR	3		LDAR	8		LDAR	2	
CIRAD	20	20	CIRAD	30	30	CIRAD	100	100
Total	203	185		156	142		174	200

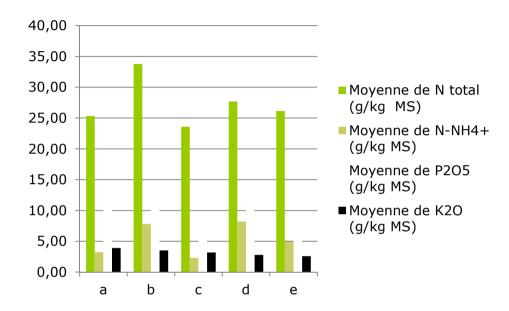
Travail réalisé par Julien Gogibus (CDD CASDAR effluents v 2.3)

En bleu : les parties du projet sur lesquels le technicien a travaillé.


- Stage de 6 mois pour la mise en œuvre de la spectroscopie proche infrarouge pour améliorer la prédiction de la composition des effluents d'élevage (Hanane AITAISSA)
- Unités d'accueil : UMR SAS Rennes (INRA et Agrocampus Ouest) et CIRAD Réunion
- Co-encadrement : Youssef Fouad Thierry Morvan Laurent Thuriès

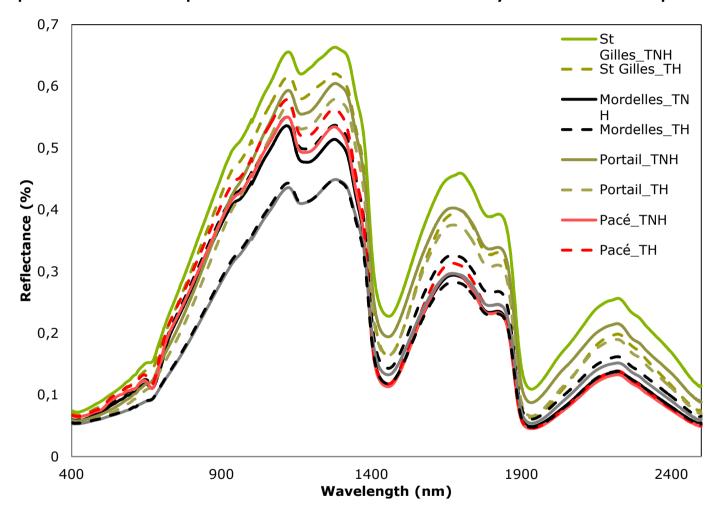
Essai d'utilisation de la SPIR lors de l'épandage de fumiers de bovin au champ V Parnaudeau, Y Fouad, S Martin

- 20 échantillons prélevés sur 5 chantiers d'épandage (contact agriculteurs par J Grall, CRAB) en mars 2012
- Protocole: issu de Thuriès et al, in Mémoire stage A Bazot, 2011
 - Echantillons déposés dans un seau
 - SPIR en surface
 - SPIR après homogénéisation manuelle
 - Echantillons congelés puis passés au blixer
 - SPIR + analyses NTK et N minéral
 - Echantillons séchés à 60℃
 - SPIR + analyses C, N, P, K



Paris, le 10-11 Janvier 2013

1ers résultats


 Résultats analyses labo par chantier d'épandage

 Résultats SPIR en cours d'exploitation

Comparaison des spectres de réflectance moyens obtenus par site

Volet « acquisition de références sur les nouveaux produits »

Bertrand Decoopman (CRAB)

PRO issus de séparation de phases lisier de bovin

- 9 élevages suivis dans le grand ouest.
- Analyses lisiers, lisier après séparation de phase, séparation de phases fraîche et séparation de phases +/- compostée.
- Deux systèmes d'évacuation : hydrocurage et raclage.
- Deux séparateurs de phases : vis presseuse et tamis vibrant.

Principaux résultats

- Taux de capture : tamis > vis
- Issues séparation phases « hydrocurage » plus riche en K que issues « raclage »

Produits frais							
sur MS	MO %	рН	C/N	N tot kg/t	N org kg/t	P2O5 kg/t	K2O kg/t
Vis	91	8.6	37	12.5	12	5.4	10
Tamis	80	9	36	11	11	4.8	16
Coefficient de	variation de 3	à 18 % sauf l	P2O5 vis : 36	%			

Produits c	ompostés	/ stockés c					
sur MS	MO %	рН	C/N	N tot kg/t	N org kg/t	P2O5 kg/t	K2O kg/t
Vis	77	8	16	24	23.5	12	22
Tamis	79	8.5	16	26	25.5	12.5	23
Coefficient de	variation de 1	0 à 25 % sauf	P2O5 tam e	t K2O vis: 36	% et 33 %		

Compost de crottes de porc issu d'installations équipées de racleur en V

- 3 sites (dont la station expérimentale de Guernévez).
- 13 lots suivis (dont 2 x 3 rep).
- 3 mois de compostage environ.
- 2 à 3 % en masse de paille rajoutés au début de compostage.
- 2 à 3 retournements (ventilation testée mais non efficace).

Principaux résultats

En % de la MB

	MS	MO	C org	C/N	N total	NH3	N org	P205	K20	Cuivre	Zinc
Moyenne	57.00	43.00	21.60	10.76	2.06	0.22	1.80	3.10	1.90	166.00	820.00
Coef de va	15%	16%	17%	16%	11%	71%	13%	17%	11%	35%	41%
										mg/k	g MS

- Sur 7 échantillons ISB = 0.35 et Tr = 42%
- C/N toujours > 8 = type I de la DN
- Conformité NFU 42 001 Engrais NP issus de lisier (NPK > 6 %, N> 1.5 %, P2O5> 3%) possible si dépassement des 55-60% de matière sèche

- <u>Le rôle du Casdar</u> a été de promouvoir et coordonner les actions de mise en place d'essais au champ sur les Keq et CAU.
- Méthodologie :
 - Bretagne : conformité au préconisations du protocole réseau PRO en cours de réalisation (sauf un essais démonstratif).
 - Loiret : conformité d'une partie des essais aux préconisations du protocole réseau PRO.

Principaux résultats

Rapport N-NH4 / N tot : de 65 à 95 % dans les digestats testés.

	année	culture	date apport	méthode	CAU moy	Keq moy	observations
b	2010	RGI	juin	pendillard	17%	27%	2éme coupe
b	2011	RGI	mars	pendillard	45%	55%	1er coupe
b	2011	blé	mars	pendillard	66%	66%	
b	2012	blé	mars	pendillard	abs	65%	démonstration
L	2011	blé	mars	palette	13%	20%	dose > plafond
L	2012	blé	mars	palette	7%	10%	dose > plafond
b	2011	maïs	1er mai	pendillard	36%	51%	
b	2011	maïs	1er mai	injection	72%	100%	
L	2011	maïs	1er mai	palette	abs	24%	dose > plafond
L	2012	colza	fevrier	palette	46%	86%	

Observations : Bretagne comparaison avec lisier de porc : des rapprochements possibles. (Keq : blé : 0.6, maïs : 0.7, colza print : 0.65)

Des sur doses apportées à la palette ainsi que des apports en conditions estivales, peuvent provoquer des effondrement des Keq.

Volet « intégration/transfert des résultats »

- Synthèse des résultats via l'élaboration d'une typologie des effluents et test de cette typologie dans les outils,
- Intégration des données de caractérisation dans le paramétrage des OAD et modèles,
- Rédaction et diffusion de fiches techniques par produit
- Organisation de réunions d'informations et de démonstrations à destination des agriculteurs, techniciens et enseignants
- → travaux prévus pour 1er semestre 2013

Suites attendues du projet « effluents d'élevage »

- Projet transversal sur l'épandabilité des produits, les cinétiques d'évolution des produits au cours du stockage, les évolutions nécessaires en termes de matériels et de transformation des produits
- Actualisation de la revue « Fertiliser avec des engrais de ferme »
 2001 des Instituts (Cadre : Comifer ?)
- Elargir la calibration de la SPIR à (i) d'autres catégories d'effluents (compost, fientes de volailles, lisiers de bovins...) (ii) à la composition biochimique...
- Validation de la faisabilité de la prédiction directe de la SPIR in situ, par une application à une gamme de produits plus importante

Merci de votre attention