

A web application to estimate soil Nitrogen mineralization available for crops in Brittany

Beff, L.¹, Lambert, Y.², Squividant, H.¹, Lemercier, B.¹, Vincent, S.¹, Pichelin, P.¹, Elazhari, A.¹, Morvan, T.¹

laure.beff@inra.fr

¹ UMR SAS, AGROCAMPUS OUEST, INRA, Rennes, France ; ² Chambre d'agriculture de Bretagne, Rennes, France

Introduction

- Brittany:
 - o Agriculture
 - 59% of the area is used for agriculture
 - First breeding region in France
 - o Soil

- Wide range of organic matter (2,5 % to 10 % on the surface which corresponds to a storage from 80 to 350 tons of carbon per hectare (Bretagne Environnement, dossier 10, sept 2015))
- Almost no limestone
- Low variability of pH and clay content
- Surrounded by the sea
- Optimizing Nitrogen (N) fertilization is then essential to achieve good crops yields and minimize environmental issue such as nitrate leaching
 - This requires **correctly predicting** the amount of N resulting from soil organic nitrogen mineralization (*Mh*), usable by crops,
 - Which can vary greatly depending on climatic conditions, soil properties and cropping system
 - Current models are not well adapted to the Britain pedo-climatic context

How properly estimate Mh?

Objectives of Mh Project (2010 – 2015)

- Obtain references on soil N mineralization in Brittany
- Characterize the variability of Mh
- Identify and classify the factors involved
- Evaluate the existing models
- Propose a new predictive model of Mh for Brittany

Field experiments (2010 – 2014)

- 137 fields (representative of soils, crop rotations and climate of Brittany)
- Managed during 4 years
 - o Silage maize
 - Without fertilization
 - Bare soil during winter

How properly estimate Mh?

Objectives of Mh project (2010 – 2015)

- Obtain references on soil N mineralization in Brittany
- Characterize the variability of Mh
- Identify and classify the factors involved
- Evaluate the existing models
- Propose a new predictive model of Mh for Brittany

Field experiments (2010 – 2014)

Web Réseau M

- 137 fields (representative of soils, crop rotations and climate of Brittany)
- Managed during 4 years
 - Silage maize
 - Without fertilization
 - Bare soil during winter

Conclusion

- New predictive model for Mh for Brittany
- Mh = Vp * tn
 - Vp = f(Sol, APM, I_Sys)
 - tn = normalized time

Prediction of Mh

What is Sol-AID?

The farmer has soil analysis

- Soil analysis encoding will be possible
- Pedotransfert functions are included to estimate the missing value (soil water content at field capacity and wilting point, bulk density, APM, etc.)

Soil types decision trees

- Decision trees were realized jointly between agronomists, soil scientists and agricultural advisors
- Determining soil type is required only at the first connection and is stored in the Sol-AID database

Prediction of Mh

I_Sys: indicator of the crop system

 I_Sys is determined with crop history (rotation and manure) application) over the last 15 years

Prediction of Mh

Estimation of tn

- tn = normalized time = climate normalization
 - Depends of soil water content and soil temperature (dynamic)

- What will be the weather next year?
- How it will impact Mh?

• Calculation of a forecast tn with the weather of the past 20 years

Sol-AID

March

Sol-AID

Let's go to the demo

