

ESCo MAFOR : Epandages fertilisants : quels impacts agronomiques et environnementaux des fumiers, composts, boues d'épuration...?

Sabine Houot (INRA), Marie-Noëlle Pons (CNRS), Marilys Pradel (Irstea): responsables scientifiques

Anaïs Tibi, Marc-Antoine Caillaud (INRA-Depe) : équipe projet

RMT Fertilisation & Environnement 8 Janvier 2015

ESCo Mafor : contexte de la demande

Mafor = matières fertilisantes d'origine résiduaire

Un recours ancien à certaines Mafor :

Effluents d'élevage

Boues d'épuration urbaines dès le 19e siècle

Bases de la fertilisation organique

L'usage plus récent d'autres matières et la diversification des Mafor commercialisées

- → Quelles ressources exploitables aujourd'hui?
- → Quel potentiel de substitution aux engrais minéraux de synthèse ?
- → Origines diverses des matières : présence de contaminants ?
- → Quel recul sur l'usage de ces matières et ses effets ?

Questions posées à l'ESCo

→ Un bilan des bénéfices et des risques environnementaux de l'épandage des Mafor sur les sols agricoles et forestiers, sur la base de la littérature scientifique.

Les interrogations majeures :

- **Agronomie** : efficacité des Mafor, effets des épandages sur le fonctionnement des écosystèmes cultivés...
- **Environnement** : apport de contaminants *via* les Mafor, devenir dans l'environnement, écotoxicité, qualité des matières premières agricoles...
- **Economie, droit, sociologie**: conditions d'insertion des Mafor dans les systèmes de production agricole et les territoires, perception par la société, état du droit applicable

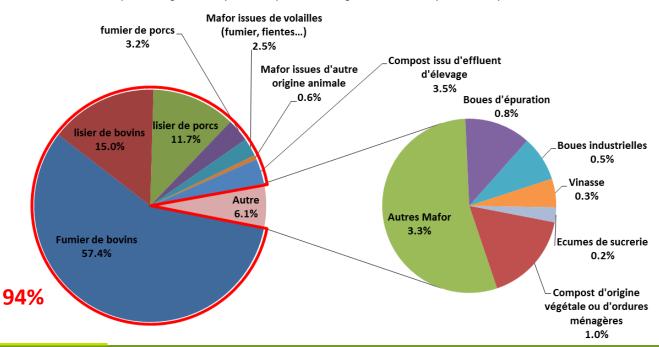
Des questions hors périmètre :

- Impact des épandages de Mafor sur la santé humaine → saisine ANSES portant sur l'évaluation des risques sanitaires
- Evaluation comparative des traitements applicables aux Mafor
- Comparaison avec les autres voies de valorisation/élimination des déchets

Plan de la restitution

- Ressources et utilisation de Mafor en France
- Intérêts agronomiques des Mafor, impacts environnementaux associés
- Les Mafor, vecteurs de contaminants ?
- Bilan et pistes de recherche pour optimiser l'usage des Mafor

RESSOURCES ET UTILISATION DES MAFOR EN FRANCE


Ressources et utilisation de Mafor en France

Diversité des Mafor en France : quantités épandues

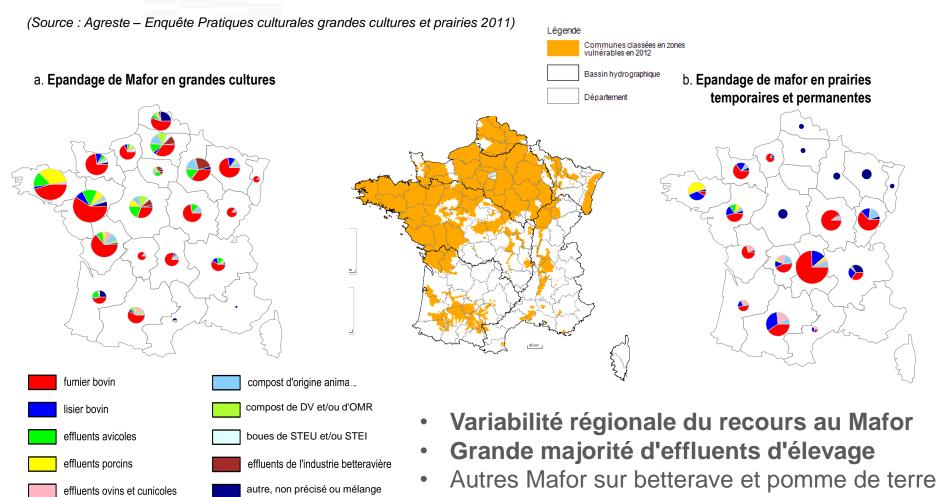
- Essentiellement agricole: 94% des quantités épandues sont des effluents d'élevage
- 6% épandus restants = composts et Mafor d'origine industrielle et urbaine (**15 à 80% des ressources recyclées**)

Quantités totales de fumure organique apportées sur les sols agricoles en 2011

(Source: Agreste – Enquête Pratiques culturales grandes cultures et prairies 2011)

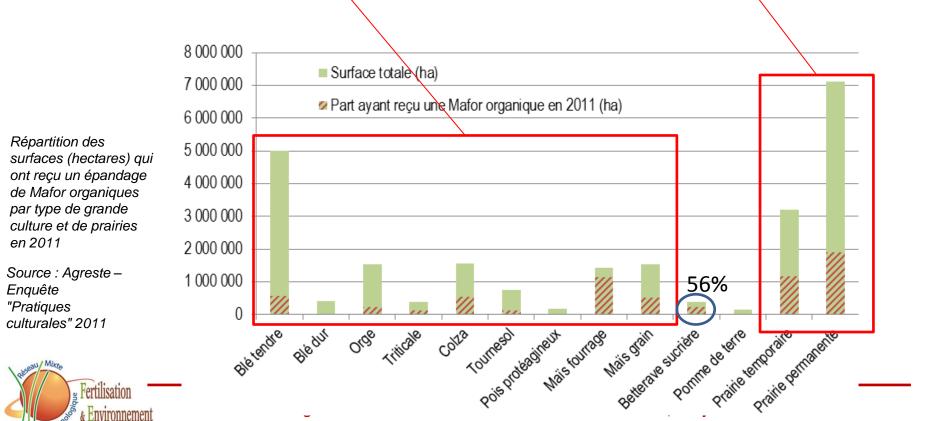
121 millions de tonnes de matière brute (MB) de Mafor épandues

- => Pression d'apport de 17t MB/an ha SAU fertilisé avec des Mafor en moyenne
- + 148 millions de tonnes de déjections émises à la pâture



Ressources et utilisation de Mafor en France

Une hétérogénéité spatiale des épandages de Mafor en France



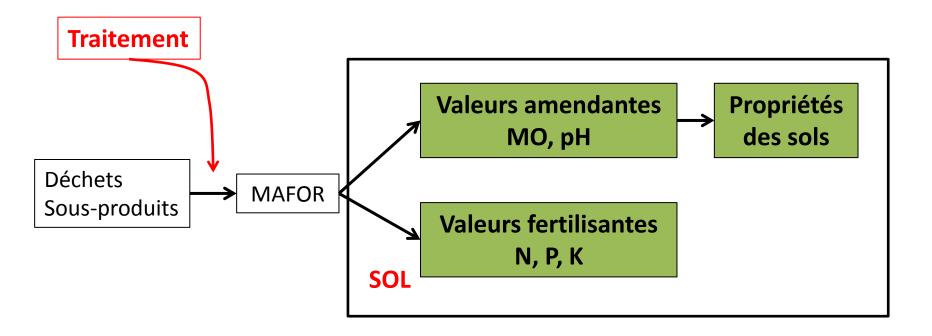
Ressources et utilisation de Mafor en France

Etat des lieux des surfaces recevant des Mafor en France

26% des surfaces en Grandes Cultures (89% = effluents d'élevage, dont 6% sous forme de compost)

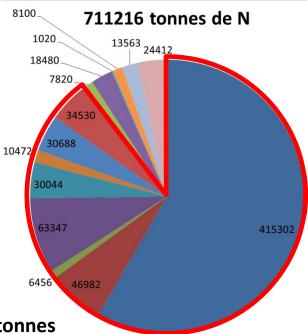
30% des surfaces en Prairies (96% = effluents d'élevage, dont 7% sous forme de compost, sans déjections émises au champ)

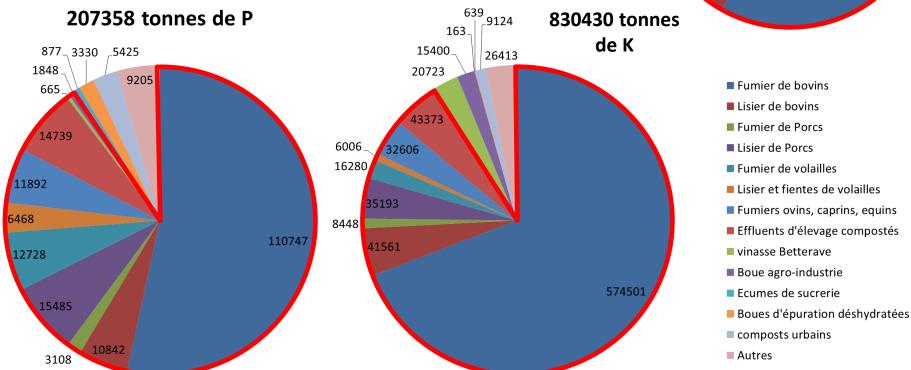
Intérêts agronomiques des Mafor et impacts environnementaux associés



Valeurs agronomiques des Mafor → fertilisante et amendante

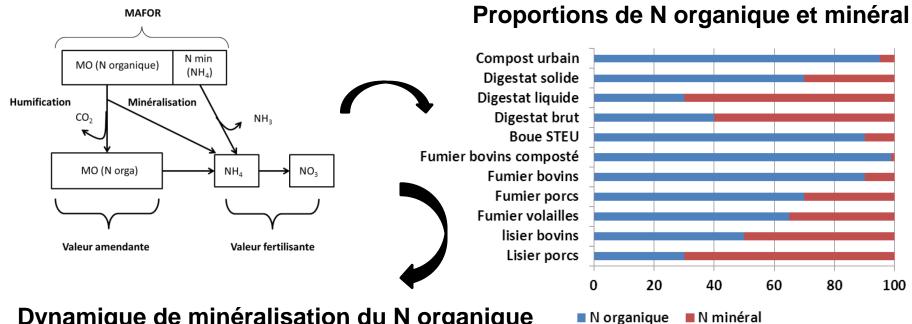
Indispensable à la justification d'utilisation d'une nouvelle matière

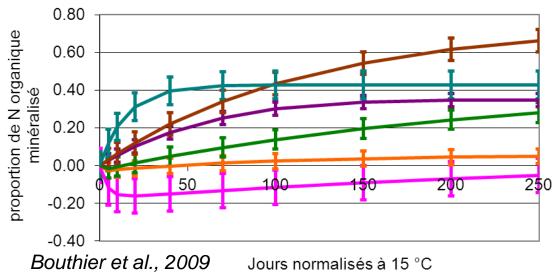




Valeur fertilisante des Mafor

Proportions du N, P et K total apporté provenant des Mafor


	N	Р	K
Epandu	25%	54%	71%
Total (+pâtures)	39%	70%	82%



Enguêtes Riatiques culturales 2011 ée générale du RMT Fertilisation & Environnement – Paris, le 8 janvier 2015

Valeur fertilisante azotée potentielle

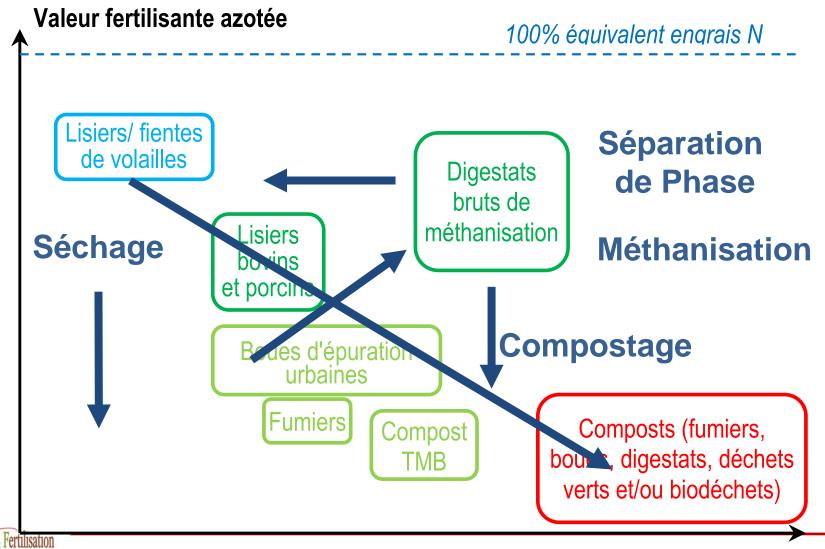
Dynamique de minéralisation du N organique

Vinasse concentrée

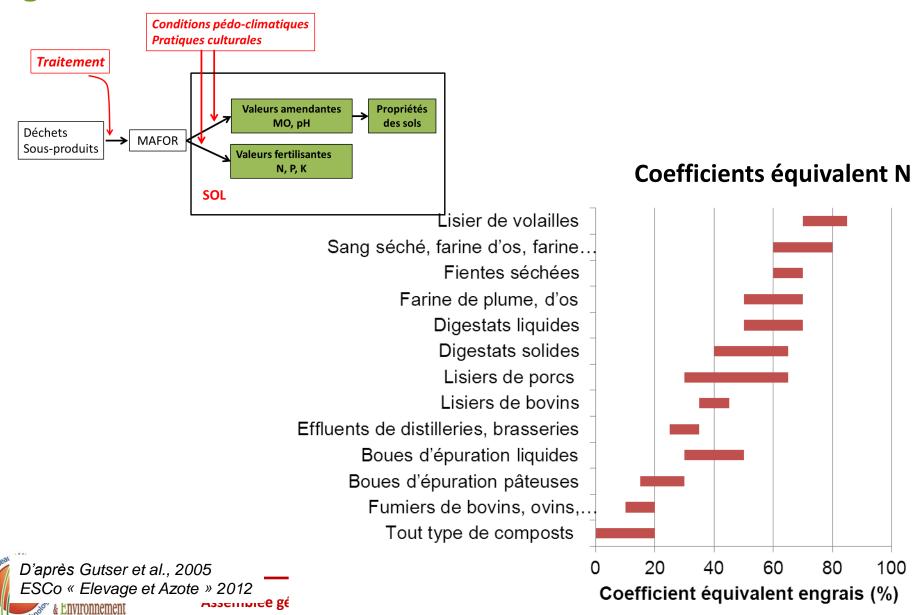
Fientes, boue STEU pâteuse

Fumier volailles, boue STEU deshydratée

Fumier de bovin


Fumier composté, compost de boue

Compost déchets verts

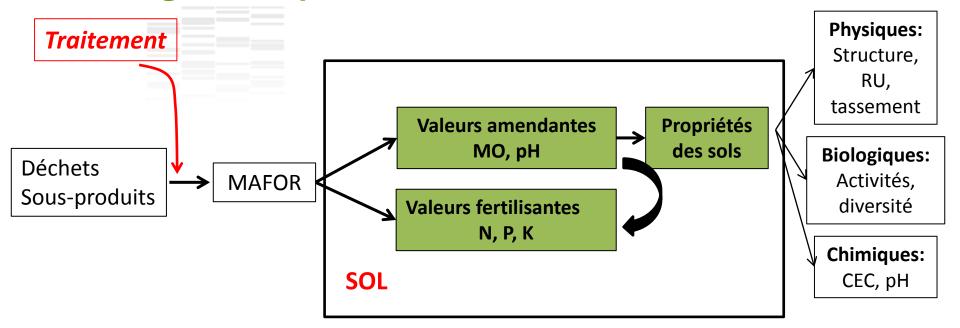

Lien entre valeur fertilisante azotée et amendante

■ Origine et traitement préalable des Mafor → valeurs potentielles

Environnement

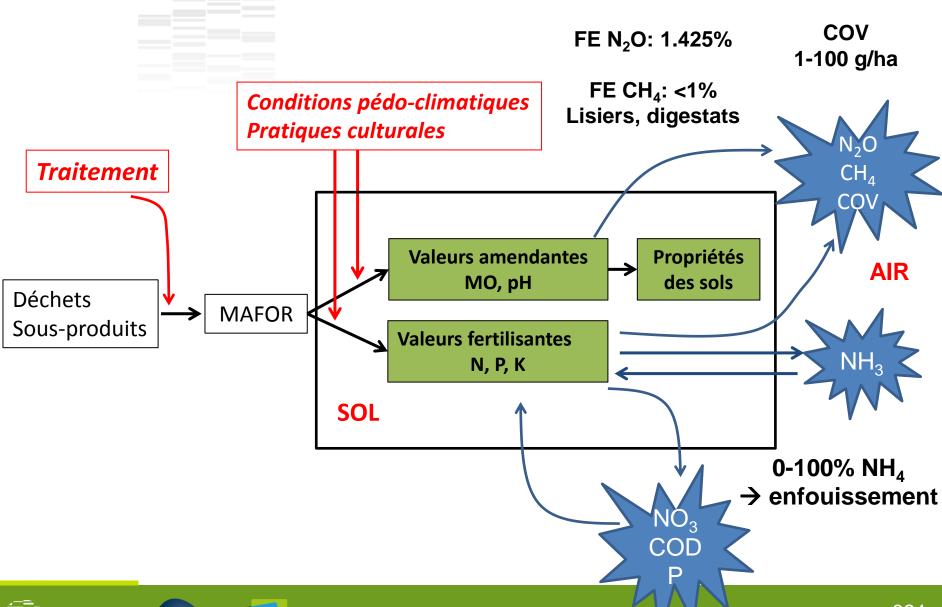
Valeurs fertilisante azotée des Mafor → substitution des engrais N

Valeur fertilisante phosphore et potasse


- 70-80% sous forme minérale
- Formes chimiques similaires aux engrais
- Potentiel proche des engrais minéraux → disponibilité dépend des conditions physico-chimique des sols (pH)
- Valeur fertilisante équivalent engrais >80%
- Exceptions: Cendres et boues dans lesquelles on insolubilise le P
- Valeur fertilisante K : identique aux engrais minéraux

Valeurs agronomiques des Mafor → amendante

Rendements moyens d'augmentation du C organique des sols dans des essais au champ :

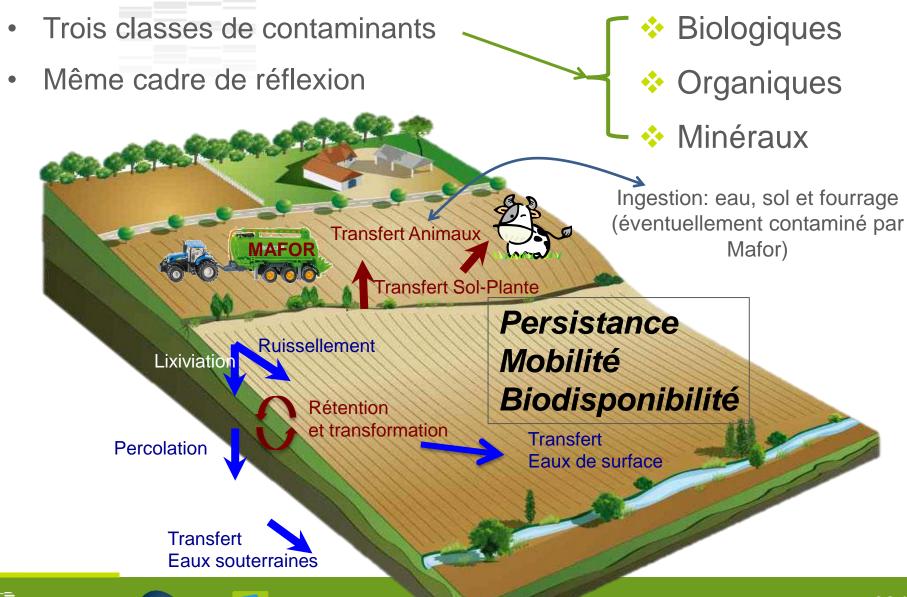

Mafor	t C sol / t C Mafor	
Composts	0,41 ± 0,22	
Boues d'épuration	0,25 ± 0,12	
Fumiers de bovins	0,25 ± 0,13	
Lisiers	0,21 ± 0,08	

Impacts environnementaux associés

Conclusion sur les valeurs agronomiques des Mafor

Substitution potentielle des engrais:

- Substitution quasi-totale pour K et P→ Recyclage de P pourrait suffire aux besoins des cultures
- Substitution partielle pour N → améliorer et poursuivre le paramétrage des modèles et des OAD en lien avec les typologies
- Connaissance de la ressource (lien conduite d'élevage, traitement et caractéristiques) → finaliser typologies des Mafor
- Mafor pluri-élémentaires: N, P, K, MO
 - Biochars, cendres et sédiments moins connus
- Effets à long terme d'apports répétés moins bien quantifiés
 - Augmentation MO→ disponibilité N
 - Améliorations des propriétés des sols
- Impacts environnementaux :
 - Evaluation globale de la pratique (filière) à améliorer
 - Contraintes réglementaires: Surface, date, dose, stockage


LES MAFOR, VECTEURS DE CONTAMINANTS ?

Les contaminants des Mafor

Bilan sur les contaminants

Mafor	Contaminants			
Grands types	Biologiques	Organiques	ETM	
Boues de STEU	Possibilité de diminution	Large spectre	Cu, Zn, autres ETM nanoparticules	
Effluents d'élevage	par traitement adapté (recroissance possible)	Pharmaceutiques (antibiotiques)	Cu, Zn	
Composts déchets verts	Phytopathogènes	Pesticides	Large spectre Faible concentration	
Composts biodéchets/OM	Pathogènes ?	Large spectre	Large spectre Nanoparticules	
Cendres		HAP	Bois de rebut (charbon, boues de STEU)	
Sédiments fluviatiles	BRA?	HAP, PCB avérés	Large spectre	
Sang séché, etc		?	?	

Persistance – Mobilité - Biodisponibilité

Les leviers pour agir sur les contaminants biologiques

- Traitement : → hygiénisation
 - Augmentation de la température :
 - compostage (70°C)
 - digestion anaérobie à 55°C > digestion anaérobie à 35°C
 - Diminution du taux d'humidité : séchage
 - Augmentation du pH : chaulage
 - Aucun traitement à 100% efficace

Arrêté du 8 janvier 1998 (boues hygiénisées)

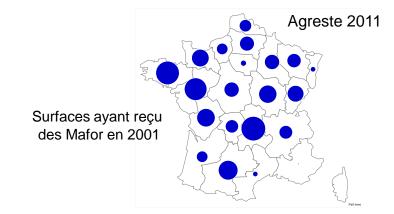
Salmonella < 8 NPP/10 g MS entérovirus < 3 NPPUC/10 g MS œufs d'helminthes pathogènes viables < 3/10 g MS

NPP = Nombre le Plus Probable

NPPUC : Nombre le Plus Probable d'Unités Cytopathogènes

Pratiques

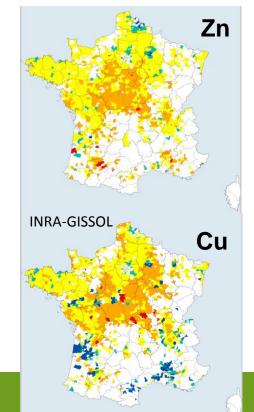
- Enfouissement ou pas ?
- Délai de retour aux champs (animaux sur prairies) et récolte :
 - 3 à 6 semaines en France
 - 1 an au Danemark
 - L'épandage de boues n'est parfois même pas autorisé (Allemagne sur prairies permanentes)



Les leviers pour agir sur les ETM

- Flux dû aux Mafor: ≈ lente accumulation
- Traitements:
 - Diminution de la mobilité
 - Cependant, en termes de teneur totale:
 - Augmentation : digestion
 - Dilution : chaulage
- Qualité des matières premières
 - Choix : nature du bois dans les cendres
 - Tri en amont :
 - Compost de biodéchets
 - Gestion des eaux résiduaires

Valeurs en mg/kg

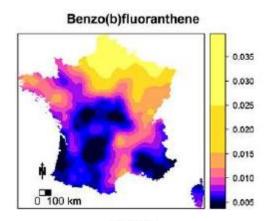

[0;1[

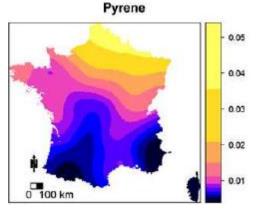
[1;2[

[2;5[

[5;10[

>= 10



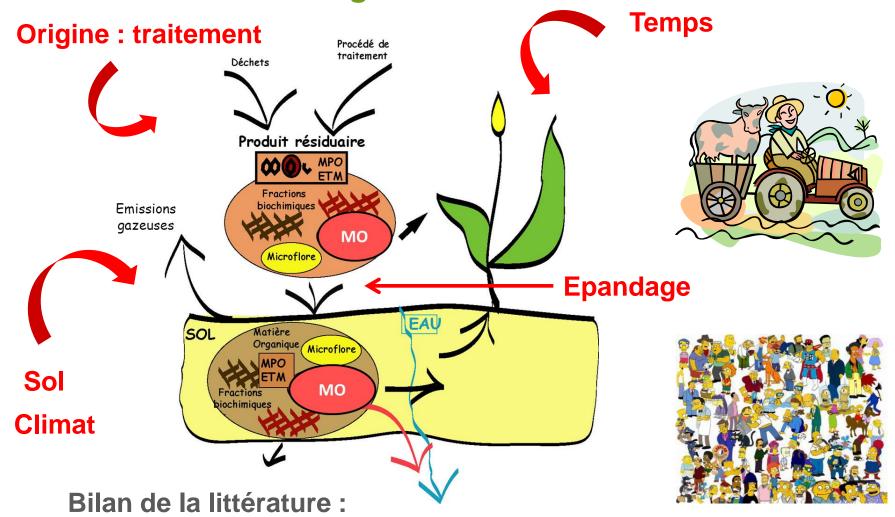


Les leviers pour agir sur les composés organiques

- Effet des traitements (chaulage, compostage, digestion, etc)
 - Peu de données, pas flagrant
- Flux / devenir
 - Flux d'apport par Mafor : peut être estimé
 - Devenir : connaître l'état initial en France
 - Quelques molécules : HAP, PCB, PCDD/F
 - Autres?
 - Devenir
 - Autres sources
 - Vitesse de dégradation ?

Concentrations en:

Villaneau et al., 2013, Environ. Chem. Lett.


BILAN ET PISTES DE RECHERCHE POUR OPTIMISER L'USAGE DES MAFOR

Ce qu'il faut prendre en compte dans l'évaluation de l'usage des Mafor...

- Difficulté d'agréger tous les facteurs de variation
- Souvent imprécisions sur les Mafor étudiées
- Rien de récent sur acceptabilité, bilan économique

Bilan des questions transversales restantes

Valeur agronomique :

- Indicateurs d'effet à généraliser, à consolider /développer pour certains effets (amendement basique, activité biologique...)
- Transposition au champ et paramétrage des OAD
- Insertion dans les systèmes de culture et validation des substitutions d'engrais

Impacts environnementaux :

- Prévision et maîtrise des impacts associés aux valeurs fertilisantes
- Critères d'évaluation de l'innocuité: à homogénéiser pour toutes les Mafor ; autres critères ?

Problématiques et questions communes :

- Effets à long terme, prise en compte des "autres" effets sur les sols, effets des traitements
- Evaluations environnementales globales : bilan des effets positifs et risques environnementaux; prise en compte de toute la filière

Pistes et besoins de recherche pour optimiser l'usage des Mafor

- Amont : matières "primaires" et traitements appliqués → qualité = f(amont)
 - √ présence et devenir des contaminants
 - ✓ Cahiers des charges de plus en plus stricts (pathogènes, contaminants): « Global Gap » pour les cultures légumières au niveau mondial ?→ quelle stratégie ?
 - √ typologie des valeurs agronomiques
 - ✓ Indicateurs d'effet
 - ✓ Quel niveau de précision des estimations de disponibilité au labo/ aux hétérogénéités des sols, de la répartition après épandage...
 - √ passage labo-champ

Pistes et besoins de recherche pour optimiser l'usage des Mafor

Parcelle/exploitation :

- ✓ Qualité des récoltes: teneurs en protéines en cas de fertilisation avec des PRO
- ✓ Transcrire les effets en services écosystémiques (N, P, eau, résistance au tassement)
- ✓ Evaluation environnementale, Evaluer les « trade-off »
- ✓ Optimisation de systèmes de culture → outils de gestion adaptés
- ✓ Prise en compte des exigences SDAGE (10-20 mg/L nitrates aux exutoires) dans les travaux des RMT système innovants et CASDAR HP2N: quid des PRO dans ces programmes?
- ✓ Méthode des bilans → réglementaire. Difficulté de prise en compte de la variabilité des résultats. Calage de la méthode pour les PRO
- ✓ Devenir et hiérarchisation des contaminants → Evaluation des risques sanitaires
- √ Comprendre et prédire les effets à long terme (> 20 ans)

Pistes et besoins de recherche pour optimiser l'usage des Mafor

- Gestion territoriale et prise en compte des acteurs
 - ✓ Travaux sur l'acceptabilité des Mafor
 - ✓ Bilan des impacts économiques de l'usage des Mafor : mettre en œuvre des approches couts-bénéfices, études sur les marchés des Mafor commercialisées
 → Redistribution spatiale possible ?
 - ✓ Evaluations environnementales globales : prise en compte de la filière amont
 - ✓ Prise en compte de tous les acteurs très en amont

MERCI DE VOTRE ATTENTION.

