

Towards Improvement of N Models To Meet the Environmental Diagnosis Requirements

P. Cannavo¹, V. Parnaudeau², R. Reau³, S. Recous¹

¹INRA, Unité d'Agronomie, UR 1158, F-02000 Laon, ²INRA, UMR 1069 Sol-Agronomie-Spatialisation, F-35042 Rennes, ³INRA, UMR211 Agronomie, F-78850 Thiverval Grignon patrice.cannavo@reims.inra.fr

BACKGROUND & OBJECTIVES

Water and atmosphere contamination by nitrogen in cropped soils are constantly evocated. Models are important tools to evaluate and predict contamination risks, but which of them:

- (1) Can be adaptable to a large range of soil and climate contexts and over crop successions?
- (2) Is easy to parameterize by environmental stakeholders and agricultural advisers?

The objectives were to find out whether models exist that satisfactorily simulate N losses in agro-ecosystems, allow easy input of data and can integrate agronomic and environmental changes, and if not, what was missing?

METHODOLOGY

A review of the literature was carried out on models dealing with N behaviour in the soil-plant-atmosphere system. A total of **62 models** and more than **180 publications** were analyzed in order to identify:

- (1) the processes simulated and the time and space scales,
- (2) the equations used for each process,
- (3) the inputs data and their facility of accessibility,
- (4) their **performance** to simulate field measurements, using statistical criteria.

RESULTS & DISCUSSION	
Mineralization 86 % Leaching 79 Absorption 79 Nitrification 74 Denitrification 55 Volatilization 45 Fixation 17 Figure 1: fraction of models calculating	Others: 4%: (sugar cane, cotton, tropical products) Forestery: 5% Arboriculture: 1% Market gardening: 16% Legumes: 13%
N processes (%)	Pasture: 9%
-Gaseous losses less taken into account by models	
-Spatial scale mainly the plot (83%), then farm (7%)	Figure 2: crop species simulated by models
and watershed (10%)	-Five models with more than 45 published papers each,
 A quite large choice of concepts and equations to model N behaviour 	based on their use: Ceres, Century, Epic, Apsim and SoilN
-High contrast in equations used for absorption and	-Overall good performance for simulating mineralization and nitrification (RMSE < 30%)
nitrification with high variability of input data	-Little publications for volatilization performance simulation
-Massive use of correction factors notably for recent	and the worst performance for denitrification

-Lack in crop diversity integrated in models

CONCLUSIONS

models

- Mechanistic models shown high simulation capacity on various soil and climate conditions, and crop successions.

-The most recent models are **more functional** and empirical, **easy** to parameterize, using elements of mechanistic models, but adapted to **specific contexts**.

- Potential users have to be associated with scientists in the conception of environmental diagnostic tools, to propose a model adaptable to a large range pedoclimate contexts and at the pluri-annual modelling scale. This is the objective of the **Azosystem project**

Work supported by the GIS « Fertilisation Raisonnée »